Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.669
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517697

RESUMO

Non-coding variants associated with complex traits can alter the motifs of transcription factor (TF)-deoxyribonucleic acid binding. Although many computational models have been developed to predict the effects of non-coding variants on TF binding, their predictive power lacks systematic evaluation. Here we have evaluated 14 different models built on position weight matrices (PWMs), support vector machines, ordinary least squares and deep neural networks (DNNs), using large-scale in vitro (i.e. SNP-SELEX) and in vivo (i.e. allele-specific binding, ASB) TF binding data. Our results show that the accuracy of each model in predicting SNP effects in vitro significantly exceeds that achieved in vivo. For in vitro variant impact prediction, kmer/gkm-based machine learning methods (deltaSVM_HT-SELEX, QBiC-Pred) trained on in vitro datasets exhibit the best performance. For in vivo ASB variant prediction, DNN-based multitask models (DeepSEA, Sei, Enformer) trained on the ChIP-seq dataset exhibit relatively superior performance. Among the PWM-based methods, tRap demonstrates better performance in both in vitro and in vivo evaluations. In addition, we find that TF classes such as basic leucine zipper factors could be predicted more accurately, whereas those such as C2H2 zinc finger factors are predicted less accurately, aligning with the evolutionary conservation of these TF classes. We also underscore the significance of non-sequence factors such as cis-regulatory element type, TF expression, interactions and post-translational modifications in influencing the in vivo predictive performance of TFs. Our research provides valuable insights into selecting prioritization methods for non-coding variants and further optimizing such models.


Assuntos
Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Sítios de Ligação/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/genética
2.
J Mol Biol ; 436(6): 168491, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360091

RESUMO

Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.


Assuntos
DNA de Cadeia Simples , Proteína de Replicação A , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Ligação Proteica/genética , Proteína de Replicação A/química , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
3.
J Phys Chem B ; 128(7): 1618-1626, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38351706

RESUMO

RAS is a small GTPase and acts as a binary molecular switch; the transition from its active to inactive state plays a crucial role in various cell signaling processes. Molecular dynamics simulations at the atomistic level suggest that the absence of cofactor Mg2+ ion generally leads to pronounced structural changes in the Switch-I than Switch-II regions and assists GTP binding. The presence of the Mg2+ ion also restricts the rotation of ϒ phosphate and enhances the hydrolysis rate of GTP. Further, the simulations reveal that the stability of the protein is almost uncompromised when Mg2+ is replaced with Zn2+ and not the Ca2+ ion. The specificity of H-RAS to GTP was evaluated by substituting with ATP and CTP, which indicates that the binding pocket tolerates purine bases over pyrimidine bases. However, the D119 residue specifically interacts with the guanine base and serves as one of the primary interactions that leads to the selectivity of GTP over ATP. The ring displacement of 32Y serves as gate dynamics in H-RAS which are important for its interaction with GAP for the nucleotide exchange and is restricted in the presence of ATP. Finally, the point mutations 61, 16, and 32 influence the structural changes, specifically in the Switch-II region, which are expected to impact the GTP hydrolysis and thus are termed oncogenic mutations.


Assuntos
Nucleotídeos , Proteínas , Guanosina Trifosfato/química , Ligação Proteica/genética , Proteínas/metabolismo , Hidrólise , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo
4.
J Biol Chem ; 300(3): 105688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280431

RESUMO

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.


Assuntos
Citocromos b5 , Modelos Moleculares , Esteroide 17-alfa-Hidroxilase , Humanos , Citocromos b5/genética , Citocromos b5/metabolismo , Fluorescência , Heme , Proteômica , Esteroide 17-alfa-Hidroxilase/química , Esteroide 17-alfa-Hidroxilase/metabolismo , Ligação Proteica/genética , Ativação Enzimática/genética , Estrutura Quaternária de Proteína , Mutação
5.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141769

RESUMO

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Assuntos
Anexina A2 , Artrite Reumatoide , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante , Sinoviócitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Proliferação de Células/genética , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Fosforilação/genética , Ligação Proteica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sinoviócitos/citologia , Sinoviócitos/metabolismo
6.
Biophys Chem ; 304: 107126, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924711

RESUMO

The functions of many proteins are associated with interconversions among conformational substates. However, these substates can be difficult to measure experimentally, and determining contributions from hydration changes can be especially difficult. Here, we assessed the use of pressure perturbations to sample the substates accessible to the Escherichia coli lactose repressor protein (LacI) in various liganded forms. In the presence of DNA, the regulatory domain of LacI adopts an Open conformation that, in the absence of DNA, changes to a Closed conformation. Increasing the simulation pressure prevented the transition from an Open to a Closed conformation, in a similar manner to the binding of DNA and anti-inducer, ONPF. The results suggest the hydration of specific residues play a significant role in determining the population of different LacI substates and that simulating pressure perturbation could be useful for assessing the role of hydration changes that accompany functionally-relevant amino acid substitutions.


Assuntos
Proteínas de Escherichia coli , Repressores Lac/química , Repressores Lac/metabolismo , Ligação Proteica/genética , Proteínas de Escherichia coli/química , DNA/química , Escherichia coli/metabolismo , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 120(51): e2314920120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091294

RESUMO

Mutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. MYBPHL encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown. To decipher the roles of MyBP-HL, we used structured illumination microscopy, immuno-electron microscopy, and mass spectrometry to establish the localization and stoichiometry of MyBP-HL. We found levels of cMyBP-C, a major regulator of myosin function, were half as abundant compared to levels in the ventricle. In genetic mouse models, loss of MyBP-HL doubled cMyBP-C abundance in the atria, and loss of cMyBP-C doubled MyBP-HL abundance in the atria. Structured illumination microscopy showed that both proteins colocalize in the C-zone of the A-band, with MyBP-HL enriched closer to the M-line. Immuno-electron microscopy of mouse atria showed MyBP-HL strongly localized 161 nm from the M-line, consistent with localization to the third 43 nm repeat of myosin heads. Both cMyBP-C and MyBP-HL had less-defined sarcomere localization in the atria compared to ventricle, yet areas with the expected 43 nm repeat distance were observed for both proteins. Isometric force measurements taken from control and Mybphl null single atrial myofibrils revealed that loss of Mybphl accelerated the linear phase of relaxation. These findings support a mechanism where MyBP-HL regulates cMyBP-C abundance to alter the kinetics of sarcomere relaxation in atrial sarcomeres.


Assuntos
Proteínas de Transporte , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica/genética , Sarcômeros/metabolismo , Miosinas/genética , Miosinas/metabolismo , Miocárdio/metabolismo
8.
Curr Pharm Des ; 29(36): 2891-2901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018194

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), which first appeared in December 2019. Angiotensin I converting enzyme 2 (ACE2) receptor, present on the host cells, interacts with the receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 and facilitates the viral entry into host cells. METHODS: Non-synonymous single nucleotide polymorphisms (nsSNPs) in the ACE2 gene may have an impact on the protein's stability and its function. The deleterious or harmful nsSNPs of the ACE2 gene that can change the strength as well as the pattern of interaction with the RBD of S protein were selected for this study. RESULTS: The ACE2:RBD interactions were analyzed by protein-protein docking study. The missense mutations A242V, R708W, G405E, D292N, Y633C, F308L, and G405E in ACE2 receptor were found to interact with RBD of Omicron subvariants with stronger binding affinity. Among the other selected nsSNPs of human ACE2 (hACE2), R768W, Y654S, F588S, R710C, R710C, A191P, and R710C were found to have lower binding affinity for RBD of Omicron subvariants. CONCLUSION: The findings of this study suggest that the nsSNPs present in the human ACE2 gene alter the structure and function of the protein and, consequently, the susceptibility to Omicron subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Enzima de Conversão de Angiotensina 2/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética , Mutação
9.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850650

RESUMO

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Assuntos
Plantas , Fatores de Transcrição , Vocabulário , Cromatina , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética
10.
BMC Genomics ; 24(1): 597, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805453

RESUMO

BACKGROUND: Transcription factors (TFs) exhibit heterogeneous DNA-binding specificities in individual cells and whole organisms under natural conditions, and de novo motif discovery usually provides multiple motifs, even from a single chromatin immunoprecipitation-sequencing (ChIP-seq) sample. Despite the accumulation of ChIP-seq data and ChIP-seq-derived motifs, the diversity of DNA-binding specificities across different TFs and cell types remains largely unexplored. RESULTS: Here, we applied MOCCS2, our k-mer-based motif discovery method, to a collection of human TF ChIP-seq samples across diverse TFs and cell types, and systematically computed profiles of TF-binding specificity scores for all k-mers. After quality control, we compiled a set of TF-binding specificity score profiles for 2,976 high-quality ChIP-seq samples, comprising 473 TFs and 398 cell types. Using these high-quality samples, we confirmed that the k-mer-based TF-binding specificity profiles reflected TF- or TF-family dependent DNA-binding specificities. We then compared the binding specificity scores of ChIP-seq samples with the same TFs but with different cell type classes and found that half of the analyzed TFs exhibited differences in DNA-binding specificities across cell type classes. Additionally, we devised a method to detect differentially bound k-mers between two ChIP-seq samples and detected k-mers exhibiting statistically significant differences in binding specificity scores. Moreover, we demonstrated that differences in the binding specificity scores between k-mers on the reference and alternative alleles could be used to predict the effect of variants on TF binding, as validated by in vitro and in vivo assay datasets. Finally, we demonstrated that binding specificity score differences can be used to interpret disease-associated non-coding single-nucleotide polymorphisms (SNPs) as TF-affecting SNPs and provide candidates responsible for TFs and cell types. CONCLUSIONS: Our study provides a basis for investigating the regulation of gene expression in a TF-, TF family-, or cell-type-dependent manner. Furthermore, our differential analysis of binding-specificity scores highlights noncoding disease-associated variants in humans.


Assuntos
Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Humanos , Sítios de Ligação/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo
11.
J Biol Chem ; 299(12): 105321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802313

RESUMO

Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric ß-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.


Assuntos
Proteínas de Bactérias , Leucocidinas , Staphylococcus aureus , Toxinas Biológicas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Toxinas Biológicas/metabolismo , Mutação , Ligação Proteica/genética , Domínios Proteicos , Linhagem Celular , Células CHO , Cricetulus , Animais
12.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834349

RESUMO

Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA metabolism by binding and stabilizing single-stranded DNA (ssDNA) intermediates. Through their multifaceted roles in DNA replication, recombination, repair, replication restart, and other cellular processes, SSB emerges as a central player in maintaining genomic integrity. These attributes collectively position SSBs as essential guardians of genomic integrity, establishing interactions with an array of distinct proteins. Unlike Escherichia coli, which contains only one type of SSB, some bacteria have two paralogous SSBs, referred to as SsbA and SsbB. In this study, we identified Staphylococcus aureus SsbA (SaSsbA) as a fresh addition to the roster of the anticancer drug 5-fluorouracil (5-FU) binding proteins, thereby expanding the ambit of the 5-FU interactome to encompass this DNA replication protein. To investigate the binding mode, we solved the complexed crystal structure with 5-FU at 2.3 Å (PDB ID 7YM1). The structure of glycerol-bound SaSsbA was also determined at 1.8 Å (PDB ID 8GW5). The interaction between 5-FU and SaSsbA was found to involve R18, P21, V52, F54, Q78, R80, E94, and V96. Based on the collective results from mutational and structural analyses, it became evident that SaSsbA's mode of binding with 5-FU diverges from that of SaSsbB. This complexed structure also holds the potential to furnish valuable comprehension regarding how 5-FU might bind to and impede analogous proteins in humans, particularly within cancer-related signaling pathways. Leveraging the information furnished by the glycerol and 5-FU binding sites, the complexed structures of SaSsbA bring to the forefront the potential viability of several interactive residues as potential targets for therapeutic interventions aimed at curtailing SaSsbA activity. Acknowledging the capacity of microbiota to influence the host's response to 5-FU, there emerges a pressing need for further research to revisit the roles that bacterial and human SSBs play in the realm of anticancer therapy.


Assuntos
Antineoplásicos , Proteínas de Bactérias , Humanos , Proteínas de Bactérias/metabolismo , Glicerol , DNA de Cadeia Simples , Fluoruracila/farmacologia , Escherichia coli/metabolismo , Replicação do DNA , Antineoplásicos/farmacologia , Ligação Proteica/genética
13.
Nature ; 620(7976): 1109-1116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612506

RESUMO

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.


Assuntos
Microscopia Crioeletrônica , GTP Fosfo-Hidrolases , Mitocôndrias , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Fusão de Membrana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Mutação , Nucleotídeos/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Humanos
14.
J Biol Chem ; 299(6): 104778, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142223

RESUMO

The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA-binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore, understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently, protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here, we demonstrate a novel binding interaction between the first RNA recognition motif 1 (RRM1) of PTBP1 and the prosurvival protein myeloid cell leukemia-1 (MCL1). Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1. NMR spectroscopy reveals that this interaction allosterically perturbs key residues in the RNA-binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Processamento Alternativo/genética , Sítios de Ligação/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica/genética , RNA/metabolismo , Humanos
15.
Nat Commun ; 14(1): 2882, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208328

RESUMO

Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.


Assuntos
Corantes Fluorescentes , Receptores de Interleucina , Células HEK293 , Humanos , Receptores de Interleucina/antagonistas & inibidores , Receptores de Interleucina/genética , Corantes Fluorescentes/metabolismo , Mutação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Polimorfismo de Nucleotídeo Único , Peptídeos Cíclicos
16.
J Virol ; 97(6): e0017423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199615

RESUMO

Unbiased in vivo selections of diverse capsid libraries can yield engineered capsids that overcome gene therapy delivery challenges like traversing the blood-brain barrier (BBB), but little is known about the parameters of capsid-receptor interactions that govern their improved activity. This hampers broader efforts in precision capsid engineering and is a practical impediment to ensuring the translatability of capsid properties between preclinical animal models and human clinical trials. In this work, we utilize the adeno-associated virus (AAV)-PHP.B-Ly6a model system to better understand the targeted delivery and BBB penetration properties of AAV vectors. This model offers a defined capsid-receptor pair that can be used to systematically define relationships between target receptor affinity and in vivo activity of engineered AAV vectors. Here, we report a high-throughput method for quantifying capsid-receptor affinity and demonstrate that direct binding assays can be used to organize a vector library into families with varied affinity for their target receptor. Our data indicate that efficient central nervous system transduction requires high levels of target receptor expression at the BBB, but it is not a requirement for receptor expression to be limited to the target tissue. We observed that enhanced receptor affinity leads to reduced transduction of off-target tissues but can negatively impact on-target cellular transduction and penetration of endothelial barriers. Together, this work provides a set of tools for defining vector-receptor affinities and demonstrates how receptor expression and affinity interact to impact the performance of engineered AAV vectors in targeting the central nervous system. IMPORTANCE Novel methods for measuring adeno-associated virus (AAV)-receptor affinities, especially in relation to vector performance in vivo, would be useful to capsid engineers as they develop AAV vectors for gene therapy applications and characterize their interactions with native or engineered receptors. Here, we use the AAV-PHP.B-Ly6a model system to assess the impact of receptor affinity on the systemic delivery and endothelial penetration properties of AAV-PHP.B vectors. We discuss how receptor affinity analysis can be used to isolate vectors with optimized properties, improve the interpretation of library selections, and ultimately translate vector activities between preclinical animal models and humans.


Assuntos
Capsídeo , Dependovirus , Vetores Genéticos , Receptores Virais , Humanos , Antígenos Ly/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Receptores Virais/metabolismo , Ligação Proteica/genética , Peptídeos/genética , Biblioteca de Peptídeos , Transgenes/genética , Expressão Gênica , Células HEK293 , Endotélio/metabolismo
17.
J Biol Chem ; 299(7): 104830, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201583

RESUMO

Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a ß-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism, NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within the TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.


Assuntos
Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína Tumoral 1 Controlada por Tradução , Apoptose/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica/genética , Humanos , Sítios de Ligação , Estrutura Quaternária de Proteína
18.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37114659

RESUMO

Cyclic AMP receptor proteins (CRPs) are important transcription regulators in many species. The prediction of CRP-binding sites was mainly based on position-weighted matrixes (PWMs). Traditional prediction methods only considered known binding motifs, and their ability to discover inflexible binding patterns was limited. Thus, a novel CRP-binding site prediction model called CRPBSFinder was developed in this research, which combined the hidden Markov model, knowledge-based PWMs and structure-based binding affinity matrixes. We trained this model using validated CRP-binding data from Escherichia coli and evaluated it with computational and experimental methods. The result shows that the model not only can provide higher prediction performance than a classic method but also quantitatively indicates the binding affinity of transcription factor binding sites by prediction scores. The prediction result included not only the most knowns regulated genes but also 1089 novel CRP-regulated genes. The major regulatory roles of CRPs were divided into four classes: carbohydrate metabolism, organic acid metabolism, nitrogen compound metabolism and cellular transport. Several novel functions were also discovered, including heterocycle metabolic and response to stimulus. Based on the functional similarity of homologous CRPs, we applied the model to 35 other species. The prediction tool and the prediction results are online and are available at: https://awi.cuhk.edu.cn/∼CRPBSFinder.


Assuntos
Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sítios de Ligação/genética , Ligação Proteica/genética
19.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 2089-2100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018301

RESUMO

Effectively and accurately predicting the effects of interactions between proteins after amino acid mutations is a key issue for understanding the mechanism of protein function and drug design. In this study, we present a deep graph convolution (DGC) network-based framework, DGCddG, to predict the changes of protein-protein binding affinity after mutation. DGCddG incorporates multi-layer graph convolution to extract a deep, contextualized representation for each residue of the protein complex structure. The mined channels of the mutation sites by DGC is then fitted to the binding affinity with a multi-layer perceptron. Experiments with results on multiple datasets show that our model can achieve relatively good performance for both single and multi-point mutations. For blind tests on datasets related to angiotensin-converting enzyme 2 binding with the SARS-CoV-2 virus, our method shows better results in predicting ACE2 changes, may help in finding favorable antibodies. Code and data availability: https://github.com/lennylv/DGCddG.


Assuntos
COVID-19 , Humanos , Ligação Proteica/genética , COVID-19/genética , SARS-CoV-2/genética , Mutação/genética , Mutação Puntual
20.
Proc Natl Acad Sci U S A ; 120(15): e2216777120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011199

RESUMO

Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligação Proteica/genética , Proteína de Replicação A/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA